翻訳と辞書 |
Double-star snark : ウィキペディア英語版 | Double-star snark
In the mathematical field of graph theory, the double-star snark is a snark with 30 vertices and 45 edges. In 1975, Rufus Isaacs introduced two infinite families of snarks—the flower snark and the BDS snark, a family that includes the two Blanuša snarks, the Descartes snark and the Szekeres snark (BDS stands for Blanuša Descartes Szekeres). Isaacs also discovered one 30-vertex snark that does not belongs to the BDS family and that is not a flower snark — the double-star snark. As a snark, the double-star graph is a connected, bridgeless cubic graph with chromatic index equal to 4. The double-star snark is non-planar and non-hamiltonian but is hypohamiltonian. ==Gallery==
Image:Double-star snark 3COL.svg|The chromatic number of the double-star snark is 3. Image:Double-star snark 4color edge.svg|The chromatic index of the double-star snark is 4.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Double-star snark」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|